21002037 - MATEMATICA - CURVE E SUPERFICI

Strumenti per la comprensione del pensiero geometrico del Novecento e dei nuovi concetti di "spazio". Le nuove esigenze della rappresentazione. Rapporti tra linguaggi figurativi e tecniche di rappresentazione, espressione di forma, comunicazione attraverso immagini.
scheda docente | materiale didattico

Programma

Curve Piane. Piano nello spazio. Distanza punto-piano. Sezioni piane. Curve parametriche in R². Lunghezza di un arco di curva. La curvatura. Esempi utilizzando il software Mathematica: comandi per grafici e calcolo simbolico e numerico. Determinazione dell’equazione di una curva su un profilo dato in una immagine. Curve in forma implicita. Coordinate polari. Movimenti rigidi di una curva piana: traslazioni, rotazioni e riflessioni. Matrici di rotazione e di riflessione. Curve definite dalla curvatura.
Curve nello Spazio. Curve parametriche in R³. Curvatura e torsione. Esempi grafici della loro costruzione e animazioni con Mathematica. La terna di riferimento di Frenet: versori tangente, normale e binormale. Movimenti rigidi nello spazio. Matrici di rotazione e di riflessione.
Curve in forma implicita. Curve su superfici. Coordinate cilindriche e sferiche.
Superfici. Superfici parametriche in R³. Matrice Jacobiana. Il Gradiente. Grafici di funzioni di 2 variabili. Intersezioni di superfici. Cupole e Volte.
Superfici tubolari, coniche e cilindriche. Determinazione dell’equazione di una superficie da un esempio architettonico tridimensionale. Misure della distanza di un insieme di punti da una superficie parametrica.

Testi Adottati

M. Abate, F. Tovena, Curve e Superfici, Springer (2006)

Dispense con esempi di utilizzo del software Mathematica sono presenti nel sito del corso http://www.formulas.it/sito/corsi/matematica-curve-e-superfici-falcolini/

Bibliografia Di Riferimento

Falcolini C., Talamanca V. Modelli geometrici applicati a nuvole di punti. In: "Mathematica Italia UGM 2015 - Atti del Convegno". ISBN: 978-88-96810-04-0, Napoli, 22 - 24 maggio 2015 Canciani M., Falcolini C., Saccone, M., Spadafora G.: From point clouds to architectural models: algorithms for shape reconstruction, 2013. R. Caddeo, A. Gray Lezioni di geometria differenziale. Curve e Superfici. vol. 1 Cooperativa Universitaria Editrice Cagliaritana (2001) (oppure nuova versione in inglese dallo stesso testo Alfred Gray, E. Abbena, S. Salamon Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition Chapman & Hall/CRC (2006))

Modalità Erogazione

Le lezioni a distanza sono svolte per le prime lezioni sulla piattaforma Moodle e per il resto del corso sulla piattaforma TEAMS. Le lezioni sono in forma laboratoriale rivolte a tutti gli studenti in modalità a distanza utilizzando il software Mathematica, per la parte di elaborazione ed analisi di modelli matematici, e Metashape per il rilievo fotogrammetrico e la generazione di "Nuvole di punti".

Modalità Frequenza

La modalità di frequenza dell’insegnamento è obbligatoria al 75% delle ore.

Modalità Valutazione

La prova orale si svolgerà “a distanza” e sarà incentrata sulla presentazione di una tesina riguardante un modello matematico di superficie da un esempio architettonico tridimensionale: il modello è ottimizzato rispetto alla sua distanza dalla "nuvola di punti" del rilievo ottenuto a partire da foto degli studenti utilizzando un programma di fotogrammetria. L'esame si svolgerà sulla piattaforma Teams, una delle piattaforme suggerite dall'Ateneo, sulla base di un calendario fissato all'inizio del primo giorno dell'appello, quando saranno invitati a collegarsi tutti gli iscritti alla prova.